Goodness-of-fit tests for fitted RRs

Author: P.N. Lee Date : 11th June 2012

1. <u>Prospective studies</u>

We have an observed table of pseudo-numbers:

Level	Cases	<u>At risk</u>
Baseline	A_0	N_0
Low exposure	A_1	N_1
High exposure	A ₂	N_2
Total	As	Ns

We have fitted a set of RRs, $1 : R_1 : R_2$ ($R_0 = 1$)

We wish to derive a set of fitted cases F_0, F_1, F_2

We have the following formulae:

$F_0 + F_1 + F_2 = A_S$	(marginal totals stay the same)	(1)
$R_1 = (F_1 N_0) / (F_0 N_1)$		(2)
$R_2 = (F_2 N_0) / (F_0 N_2)$		(3)

$$R_2 = (F_2 N_0) / (F_0 N_2)$$
(3)

From (2)
$$F_1 = F_0 N_1 R_1 / N_0$$
 (4)

From (3)
$$F_2 = F_0 N_2 R_2 / N_0$$
 (5)

From (1,4,5)
$$F_0 + \frac{F_0 N_1 R_1}{N_0} + \frac{F_0 N_2 R_2}{N_0} = A_s$$
 (6)

so
$$F_0 N_0 + F_0 N_1 R_1 + F_0 N_2 R_2 = A_S N_0$$
 (7)

or
$$F_0 = (A_s N_0 R_0) / \sum_{i=0}^{2} (N_i R_i)$$
 (8)

From (4,8)
$$F_1 = (A_{S}N_1R_1) / \sum_{i=0}^{2} (N_iR_i)$$
 (9)

From (5,8)
$$F_2 = (A_5 N_2 R_2) / \sum_{i=0}^{2} (N_i R_i)$$
 (10)

This allows one to derive fitted values and is clearly generalisable to multiple exposure levels (k).

A chisquared test of goodness-of-fit may be derived in the usual way from the formula:

$$\chi^{2} = \sum_{i=0}^{k} (A_{i} - F_{i})^{2} / F_{i}$$

The degrees of freedom is k - 1.

2. <u>Case-control studies</u>

Here the observed table of pseudo-numbers is:

Level	Cases	<u>Controls</u>	<u>Total</u>
Baseline	A_0	B_0	C_0
Level 1	A_1	B ₁	C_1
Level 2	A_2	B ₂	C_2
Total	As	Bs	Cs

The expected table of fitted numbers is:

Level	Cases	<u>Controls</u>
Baseline	F ₀	\mathbf{G}_0
Level 1	F_1	G_1
Level 2	F_2	G_2

We have fitted RRs, $1 : R_1 : R_2$ ($R_0 = 1$)

2.1 <u>A first attempt to solve the equations</u>

The reader may prefer to skip to section 2.2.

We can write down the following formulae based on the marginal totals and the RRs:

$F_0 + G_0 =$	C_0 ((1)

$$F_1 + G_1 = C_1$$
 (2)

$$F_2 + G_2 = C_2 \tag{3}$$

$$F_0 + F_1 + F_2 = A_S$$
 (4)

$$R_1 = F_1 G_0 / (F_0 G_1)$$
(5)

$$R_2 = F_2 G_0 / (F_0 G_2) \tag{6}$$

From (5) $G_1 = F_1 G_0 / (F_0 R_1)$ (7)

From (6)
$$G_2 = F_2 G_0 / (F_0 R_2)$$
 (8)

From (2,5)
$$F_1 + \frac{F_1 G_0}{F_0 R_1} = C_1$$
 (9)

or
$$F_0F_1R_1 + F_1G_0 = C_1F_0R_1$$
 (10)

From (1)
$$F_0F_1R_1 + F_1(C_0 - F_0) = C_1F_0R_1$$
 (11)

or
$$F_1 = C_1 F_0 R_1 / (F_0 R_1 + C_0 - F_0)$$
 (12)

Similarly
$$F_2 = C_2 F_0 R_2 / (F_0 R_2 + C_0 - F_0)$$
 (13)

From (4,12,13)
$$F_0 + \frac{C_1 F_0 R_1}{(F_0 R_1 + C_0 - F_0)} + \frac{C_2 F_0 R_2}{(F_0 R_2 + C_0 - F_0)} = A_S$$
 (14)

This is an equation in F_0 only, which hopefully can be solved.

Formula (12) gives F_1 in terms of F_0

Formula (13) gives F_2 in terms of F_0

Formulae (1,2,3) then give G_i in terms of F_i

This gives the whole table of fitted numbers. Here we can calculate a goodness-of-fit statistic as:

$$\chi^{2} = \sum_{i=0}^{k} (A_{i} - F_{i})^{2} / F_{i} + \sum_{i=0}^{k} (B_{i} - G_{i})^{2} / G_{i}$$

The degrees of freedom is 2k - 1.

The problem is solving formula (14). For k = 2 it is a cubic (as can be seen by multiplying through by the denominators). For general k it involves powers of k + 1 presumably, and I don't know how to solve that. I suppose one could search starting at $F_0 = A_0$.

2.2 An alternative approach

This is illustrated in T:/PNLEE/FITFORCCSTUDIES.XLSX. Here we have an observed table of pseudo-numbers of

Level	Cases	Controls	<u>Total</u>
Baseline	$A_0 = 40$	$B_0 = 110$	$C_0 = 150$
Level 1	$A_1 = 90$	$B_1 = 110$	$C_1 = 200$
Level 2	$A_2 = 220$	$B_2 = 80$	$C_2 = 300$
			~
Total	$A_{\rm S} = 350$	$B_{\rm S} = 300$	$C_{S} = 650$

We have fitted RRs at 1 : 2 : 4

In line 7 of the spreadsheet we first calculate B_iR_i for each level and in total, and then derive a first estimate of fitted cases using the formula

$$F_i = (A_S B_i R_i) / \sum_{i=0}^{e} (B_i R_i)$$

Taking the first estimate of fitted controls (G_i) as the original pseudo number (B_i) , we then have a set of cases and controls which produce the fitted RRs but with the marginal totals not adding up over level.

In line 8, we scale the estimates of F_i and G_i by the same factor so that their sum is equal to C_i . Now the marginal totals over all cases and over all controls do not equal A_S and B_S . So in line 9, we scale them so that they do sum to A_S and B_S . However, the totals over levels, C_i , are then wrong.

We therefore repeat the two steps until they converge to the right answer, which is

Level	<u>Cases</u>	<u>Controls</u>	<u>Total</u>
Baseline	$F_0 = 50$	$G_0 = 100$	$C_0 = 150$
Level 1	$F_1 = 100$	$G_1 = 100$	$C_1 = 200$
Level 2	$F_2 = 200$	$G_2 = 100$	$C_2 = 300$
Total	$A_5 = 350$	$B_5 = 300$	$C_{5} = 650$

This happens rapidly as can be seen and by 5 goes (line 16) the fit is very good.

Lines 22-35 in the spreadsheet correspond to lines 7 - 20 and show the chisquared statistic.